Start your day with intelligence. Get The OODA Daily Pulse.
Intelligence Failure? Black Swan? Gray Rhino? Systemic Failure? An entropic, sclerotic Israeli political system? The geopolitical and regional power context for the recent surprise, large scale and violent Hamas attack of Israel may prove to be “all of the above”. What is clear is the attack was designed as a large scale, kinetic and digital “network swarm” – which now opens up a new, “formal” kinetic front in the ongoing, global networked war in the Middle East. Swarm dynamics are a crucial mental model – which we apply here to the Hamas network swarm attack of Israel.
Instead of arm chair refereeing the decisionmaking and failures around this attack and the subsequent violence and Israeli response, we offer “Swarm Dynamics” as a prism, filter and framing through which decisionmakers should analyze these events. Legacy thinking is ripe with cognitive biases and failures of imagination. New mental models need to be onboarded.
The macro argument here is that while there is strategic risk of a potential full blown “great power competition” conflict between the U.S., Russia and/or China, the world is already in a war condition based on networked warfare topologies which are all at once causing and a reaction to unprecedented geopolitical uncertainty. In this era of networked warfare and polycrises (with violence as a symptom, lever, and driver of these crises), swarm dynamics is a crucial mental model – which we apply here to the Hamas network swarm attack of Israel.
Again: Intelligence Failure? Black Swan? Grey Rhino? Systems Failure? An entropic, sclerotic Israeli political system? All these mental models can be applied to the shocking elements of surprise that marked this attack by Hamas and provide insights and strategic framing. The reality is that these other mental models and strategic frameworks are all secondary to the non-existents filters and a lack of pattern recognition pointed at the networked warfare and swarm dynamics activities swirling around the Israeli border and in Gaza.
A working hypothesis for this analysis is:
The Hamas attackers were a swarm that coordinated and planned a network swarm attack (in phases based on the characteristics, organizing principles, and phenomonology of swarm dynamics and swarm architectures). The effectiveness of this network swarm attack and the Israeli’s entropic systemic response now sets the stage for the opening of a prolonged, “formal” kinetic front in the always volatile Middle East – joining the conflict in Ukraine (and some would include the cumulative civil war conflicts plaguing the continent of Africa and the Northern frontier of Mexico) as the major kinetic hot spots in a global networked war.
What we call “Swarm Dynamics” emerged as a research theme for OODA Loop from:
OODAcon 2022 guest speaker Sean Gourley has also written and presented on the topic. Gourley is known for his work in data science, complex systems, and artificial intelligence, particularly his research on understanding conflict through data analysis.
For more context, we have been tracking swarm activity through our news brief and original analysis for some time. For a review, go to OODA Loop | Swarm.
Swarm dynamics is:
We now add the Hamas attack of Israel on Saturday, October 7, 2023 to this list real world case studies of swarm dynamics as mental model and research discipline. And, of course, our heart goes out those suffering through the death and destruction of the regional conflicts in both Ukraine and now Israel. We will continue to track the developments in both conflicts for our readership.
Sections of this discussion:
In the context of a terror network attacking the borders of a nation-state, a networked swarm attack would exhibit specific characteristics that leverage the decentralized, adaptive, and coordinated nature of networked swarms. While the situation is hypothetical, the following characteristics illustrate how such an attack might unfold:
It’s important to note that these characteristics are hypothetical and illustrative. Real-world scenarios involving terrorism and border security are complex and multifaceted. Security forces continually work to develop strategies and technologies to counter potential threats and adapt to evolving tactics employed by terror networks.
Terrorist networks and networked swarms share certain similarities, particularly in their decentralized and adaptive nature. Here are some commonalities between the two:
1. Decentralized Structure: Both terrorist networks and networked swarms operate without a centralized command structure. Instead, they consist of loosely connected, semi-autonomous entities that operate independently, making it difficult for authorities to target a single point of control.
2. Adaptability: Terrorist networks and networked swarms are adaptive in response to changing environments and situations. They can adjust their strategies, tactics, and targets based on real-time feedback and new information. This adaptability allows them to respond quickly to threats and exploit emerging opportunities.
3. Resilience: Both entities are resilient against disruptions. If one part of the network is neutralized, other parts can continue operations. The decentralized and redundant nature of these networks enhances their ability to withstand attacks and maintain functionality.
4. Coordinated Actions: Terrorist networks, like networked swarms, can coordinate their actions to achieve specific objectives. While the goals differ significantly, the principle of collaboration and coordination among individual entities within the network remains a common characteristic.
5. Heterogeneous Members: Both terrorist networks and networked swarms often consist of members or entities with diverse skills, capabilities, and roles. This diversity allows them to perform a wide range of tasks and actions, making them versatile in various scenarios.
6. Evasion and Deception: Both entities employ evasion and deception tactics. Terrorist networks use these tactics to avoid detection and law enforcement efforts. Networked swarms might use similar techniques in cyber-attacks, where they change tactics, IP addresses, or attack patterns to evade security measures.
7. Asymmetric Warfare: Both terrorist networks and networked swarms engage in asymmetric warfare, where they exploit the weaknesses of larger, more centralized opponents. By leveraging their decentralized and adaptable nature, they can challenge conventional, hierarchical systems effectively.
8. Collaborative Intelligence: Terrorist networks and networked swarms often leverage collaborative intelligence. Members share information, insights, and strategies within the network, enhancing their overall effectiveness.
While there are similarities, it’s important to note that the goals, motivations, and methods of terrorist networks and networked swarms differ significantly. Terrorist networks aim to instill fear, spread ideologies, or achieve political goals through violence and coercion. Networked swarms, on the other hand, are more abstract and can refer to various forms of decentralized, coordinated systems, including those in cybersecurity, robotics, or even natural systems like animal swarms.
Understanding these similarities can help authorities and security experts develop strategies to counter both terrorist networks and emerging threats involving networked swarms, leveraging their own decentralized and adaptive methods in response.
Swarm dynamics refer to the collective behavior exhibited by groups of relatively simple agents or entities, each following local rules, that together produce complex, coordinated, and adaptive patterns of movement or behavior. These agents could be animals, birds, insects, robots, or even digital entities in computer simulations.
Swarm dynamics are a fascinating area of study in various fields, including biology, computer science, engineering, and social sciences.
Key Characteristics of Swarm Dynamics
Examples of Swarm Dynamics
These examples illustrate the diverse range of natural and artificial systems where swarm dynamics emerge. Studying these behaviors provides insights into self-organization, decentralized control, and adaptive strategies, which can be applied to various fields, including robotics, optimization algorithms, and urban planning.
A swarm architecture refers to a system or design approach that leverages the principles of swarm intelligence and swarm behavior observed in nature. In computing and engineering, a swarm architecture typically involves a group of relatively simple, autonomous entities (such as robots, drones, sensors, or software agents) that communicate and collaborate with each other to achieve a common goal. These entities operate based on local rules and interact with their environment and neighboring entities, leading to emergent collective behavior.
Key characteristics of swarm architectures
Examples of swarm architectures
Swarm architectures find applications in various fields, including robotics, artificial intelligence, optimization, environmental monitoring, and telecommunications. Researchers and engineers continue to explore and develop swarm architectures to create adaptive, scalable, and efficient systems for a wide range of applications.
Network swarm attacks and conflicts involve coordinated, decentralized, and adaptive actions carried out by a large number of entities within a network. These attacks and conflicts leverage the principles of swarm intelligence and aim to overwhelm, disrupt, or gain control over targeted systems or networks. Here are the key characteristics of network swarm attacks and conflicts:
1. Decentralization: Network swarm attacks operate without central control. Individual entities within the swarm act autonomously, following local rules and interacting with neighboring entities. There is no single point of control, making it challenging to disrupt the entire swarm by targeting a specific entity.
2. Coordination: Entities in a network swarm coordinate their actions in a collaborative manner. They share information, exchange data, and synchronize their activities to achieve collective objectives. Coordination enables the swarm to perform complex tasks and respond rapidly to changing conditions.
3. Scalability: Network swarm attacks can scale up to include a large number of entities. This scalability allows the swarm to overwhelm target systems or networks by increasing the volume of attacking entities. The attack’s impact intensifies as the number of entities in the swarm grows.
4. Adaptability: Network swarm attacks are adaptive and can adjust their strategies based on real-time feedback and environmental factors. If defenses change or new vulnerabilities are discovered, the swarm can adapt its attack patterns, techniques, or targets accordingly.
5. Redundancy: Swarm entities often have redundant capabilities. If some entities are neutralized or disabled, others can take over their functions, ensuring the attack’s continuity. Redundancy enhances the swarm’s resilience against countermeasures.
6. Heterogeneity: Swarm entities may vary in terms of their capabilities, resources, and attack methods. Heterogeneity allows the swarm to perform a wide range of tasks, including reconnaissance, exploitation, infiltration, and disruption. Different types of entities complement each other’s abilities.
7. Evasion and Deception: Swarm attacks can employ evasion techniques to avoid detection and mitigation efforts. By dynamically changing IP addresses, attack patterns, or malware signatures, the swarm can evade security measures. Deception tactics, such as spreading misinformation or using decoy entities, can confuse defenders.
8. Resilience: Network swarm attacks are resilient against countermeasures. Even if some entities are detected and neutralized, the attack can continue with the remaining entities. Resilience is achieved through decentralization, redundancy, and adaptability.
9. Collaborative Intelligence: Swarm attacks often leverage collaborative intelligence, where entities share knowledge and insights. This collective intelligence enhances the attack’s effectiveness, allowing the swarm to exploit vulnerabilities more efficiently.
10. Multiple Attack Vectors: Swarm attacks can employ multiple attack vectors simultaneously. For instance, a network swarm attack might include DDoS attacks, malware infections, social engineering, and insider threats, making it difficult for defenders to focus on a single defense strategy.
Understanding these characteristics is crucial for cybersecurity professionals and military strategists to develop effective defenses against network swarm attacks and conflicts. By comprehending the swarm’s behavior and adapting security measures, organizations can enhance their resilience against these decentralized and coordinated threats.
John Robb is an author, entrepreneur, and military theorist known for his work on open-source warfare and the concept of “The Global Guerrillas.” He has extensively written and spoken about the concept of swarming and its implications for network warfare and modern conflicts.
In his book “Brave New War: The Next Stage of Terrorism and the End of Globalization,” Robb explores the idea of decentralized, networked, and highly adaptive adversaries using swarming tactics to disrupt traditional hierarchical systems. He argues that modern technology, particularly the internet and social media, enables loosely connected groups to coordinate their actions and create significant impacts. These groups, which he refers to as “open-source insurgencies” or “global guerrillas,” can effectively swarm against larger, more traditional adversaries.
Robb suggests that the future of network warfare lies in these networked, decentralized approaches, where small groups or individuals can create outsized effects through swarming tactics. He emphasizes the speed, adaptability, and resilience of these networked adversaries, contrasting them with the bureaucratic and slow-moving nature of traditional institutions.
Sean Gourley, a physicist and data scientist, has conducted significant research on understanding conflict through data analysis. His work often involves applying advanced analytical techniques to large datasets related to conflict zones and warfare. The following is a general overview of the themes he and his research have explored:
1. Quantifying Conflict: Gourley emphasizes the importance of quantifying conflict data to understand its patterns and dynamics. By analyzing data related to battles, casualties, geographical locations, and other factors, researchers can identify trends and gain insights into the nature of conflicts.
2. Complex Systems Analysis: He applies principles from complex systems theory to conflicts, treating them as dynamic systems with interconnected components. By modeling conflicts as complex systems, researchers can explore how different variables interact and influence the overall dynamics of the conflict.
3. Network Analysis: Gourley has explored conflict through the lens of network analysis. This involves studying the social, political, and geographical networks within conflict zones. By analyzing these networks, researchers can identify key actors, understand their relationships, and predict how the conflict might evolve.
4. Predictive Analytics: One of the key aspects of Gourley’s research is using data analysis to make predictions about conflicts. By analyzing historical data and current trends, researchers can develop predictive models that forecast potential outcomes, helping policymakers and organizations make informed decisions.
5. Data-Driven Policy Insights: Gourley advocates for the integration of data-driven insights into policy and decision-making processes. By providing policymakers with data-backed analyses, it becomes possible to formulate more effective strategies for conflict prevention, resolution, and post-conflict reconstruction.
6. Ethical Considerations: Gourley also emphasizes the ethical implications of using data analysis in conflict zones. He discusses the importance of responsible data collection, respecting privacy, and ensuring that the use of data analysis tools does not harm vulnerable populations.
Networked warfare, also known as network-centric warfare, refers to military strategies and operations that leverage networked systems, advanced communication technologies, and information networks to gain a strategic advantage on the battlefield. In networked warfare, military units, sensors, weapon systems, and decision-makers are connected through secure and robust communication networks, allowing for real-time sharing of information, coordinated actions, and rapid response to changing situations.
Network swarms are groups of interconnected, autonomous entities (such as drones, robots, or cyber assets) that operate collaboratively, often in a decentralized manner. In the context of network warfare conflicts, swarm tactics play a significant role:
1. Decentralized Operations: Network swarms operate without central command, making them agile and adaptable. They can respond rapidly to emerging threats and changing battlefield conditions without waiting for orders from a centralized authority.
2. Overwhelming the Enemy: Swarm tactics involve deploying a large number of autonomous entities that can overwhelm the enemy’s defenses. By coordinating their actions, swarms can saturate and disrupt enemy systems, making it challenging for the opponent to defend against multiple simultaneous threats.
3. Collaborative Targeting: Network swarms can collaborate to identify and target enemy assets. By sharing sensor data and intelligence in real time, swarm entities can collectively analyze the battlefield, identify high-value targets, and coordinate precision strikes.
4. Scalable Intelligence Gathering: Swarms can be deployed for intelligence, surveillance, and reconnaissance (ISR) missions. By distributing sensors and surveillance assets, swarms can cover large areas, gather diverse data, and provide comprehensive situational awareness to military commanders.
5. Electronic Warfare: In networked warfare, swarm tactics are applied in electronic warfare scenarios. Multiple electronic warfare assets can operate collaboratively to jam enemy communication systems, radar, and other electronic devices. By swarming the electromagnetic spectrum, these assets disrupt the enemy’s ability to communicate and coordinate effectively.
6. Cyber Warfare: In cyberspace, swarms of cyber assets can be deployed for coordinated cyber-attacks. Botnets, which are networks of compromised computers, can operate collaboratively to launch Distributed Denial of Service (DDoS) attacks, overwhelm servers, and disrupt online services.
7. Strategic Autonomy: Swarm entities often have a degree of autonomy and can make decisions based on predefined algorithms and real-time data. This strategic autonomy allows them to continue operations even if communication with the central command is disrupted, making them resilient against certain types of attacks.
8. Coordinated Strikes: Network swarms can be used to coordinate strikes from various domains, such as land, air, sea, and cyberspace. By synchronizing attacks from different directions and dimensions, swarms can disorient and overwhelm the enemy, disrupting their ability to respond effectively.
In summary, network swarms in networked warfare conflicts enhance the military’s capabilities by providing rapid, coordinated, and overwhelming responses to threats. By leveraging the power of decentralized, autonomous entities operating within interconnected networks, military forces can achieve superior situational awareness, precision in targeting, and the ability to dominate the battlespace.
What is Biomimicry?
Biomimicry, also known as biomimetics, is an innovative approach to problem-solving that draws inspiration from nature’s designs, processes, and strategies to address human challenges. In essence, it involves imitating or emulating biological systems and processes to create sustainable and efficient solutions for various human problems.
The concept of biomimicry encompasses a wide range of fields, including engineering, materials science, architecture, medicine, and sustainable design. By observing and understanding how nature has solved complex problems over millions of years of evolution, scientists, engineers, and designers can apply these natural solutions to develop new technologies and designs.
Key Principles of Biomimicry
Examples of Biomimetic Applications
Bee swarming, the process by which a new honeybee colony is formed, involves several distinct phases and activities. Scientists and experts classify bee swarming into stages that describe the behavior and activities of bees during this process. While the exact classification can vary, here is a common way scientists and beekeeping experts categorize bee swarming:
1. Pre-Swarm Phase
2. Swarm Preparation Phase
3. Swarm Departure Phase
4. Swarm Settling Phase
5. Establishing the New Colony
It’s important to note that while these phases provide a general overview of bee swarming, the specific behaviors and timing can vary based on factors such as bee species, environmental conditions, and the specific hive’s characteristics. Scientists and experts continue to study bee swarming behavior to gain insights into the complex social dynamics of honeybee colonies.
Swarm network attacks can be analyzed and understood in terms of different phases, although the categorization of these phases may vary based on the specific attack scenario and the perspective of cybersecurity experts. Generally, swarm network attacks can be broken down into several phases:
1. Preparation Phase:In this phase, attackers gather intelligence, identify vulnerabilities, and plan the attack strategy. This might involve reconnaissance activities such as scanning networks, identifying potential targets, and profiling the target systems.
2. Recruitment Phase: Attackers assemble a network of compromised devices or bots. This phase often involves infecting computers and devices with malware, creating a botnet. Malware spreads through various means, including phishing emails, malicious downloads, or exploiting unpatched vulnerabilities.
3. Command and Control Phase: Attackers establish communication channels with the compromised devices. They set up command and control (C2) servers or utilize peer-to-peer communication methods to manage and coordinate the actions of the compromised devices within the swarm.
4. Swarming Phase: During this phase, the compromised devices operate in a coordinated manner, launching attacks on the target system or network. These attacks can include Distributed Denial of Service (DDoS) attacks, data exfiltration, or spreading malware. The swarm adapts its behavior based on the target’s defenses and response mechanisms, making it harder to defend against.
5. Evasion Phase: When defenders respond to the attack by identifying and blocking malicious traffic, the swarm may attempt to evade detection and mitigation measures. This could involve changing attack patterns, IP addresses, or attack vectors to bypass security measures.
6. Persistence Phase: To maintain long-term access and control, attackers may try to establish persistence within the compromised devices. This involves techniques to ensure that even if some devices are cleaned or patched, the attackers can regain control and rebuild the swarm network.
7. Exfiltration or Damage Phase: Depending on the attackers’ goals, they might exfiltrate sensitive data or cause damage to the targeted systems. In data exfiltration attacks, the swarm may work collectively to steal and transfer valuable information. In other cases, the swarm might disrupt services, delete data, or manipulate systems.
8. Post-Attack Phase: After the attack, attackers may analyze the outcomes, refine their tactics, and plan future attacks. They may use lessons learned from previous swarm attacks to improve their techniques and enhance the efficiency of future attacks.
Understanding these phases is crucial for cybersecurity professionals to develop effective strategies for prevention, detection, and response to swarm network attacks. As attackers continuously evolve their tactics, defenders must stay vigilant and adapt their security measures accordingly to mitigate the risks associated with swarm-based cyber threats.
In the context of a bee colony, entropy refers to a state of disorder or chaos within the colony. When a bee colony is exhibiting entropic characteristics, it means that the usual order, organization, and functioning of the colony are disrupted. Entropy in a bee colony can be caused by various factors such as disease, pest infestation, environmental stressors, or disturbances in the hive. Here’s how bees may behave when their colony is showing entropic characteristics:
Beekeepers closely observe the behavior and condition of their colonies to detect signs of entropy. Addressing the root causes, such as diseases, pests, or inadequate hive management, is essential to restoring the colony’s health and order.
Russian Invasion of Ukraine: Russia’s aggression against Ukraine prompts global repercussions on supply chains and cybersecurity. This act highlights potential threats from nations like China and could shift defense postures, especially in countries like Japan. See: Russia Threat Brief
Networked Extremism: The digital era enables extremists worldwide to collaborate, share strategies, and self-radicalize. Meanwhile, advanced technologies empower criminals, making corruption and crime interwoven challenges for global societies. See: Converging Insurgency, Crime and Corruption
Food Security and Inflation: Food security is emerging as a major geopolitical concern, with droughts and geopolitical tensions exacerbating the issue. Inflation, directly linked to food security, is spurring political unrest in several countries. See: Food Security
Geopolitical-Cyber Risk Nexus: The interconnectivity brought by the Internet has made regional issues affect global cyberspace. Now, every significant event has cyber implications, making it imperative for leaders to recognize and act upon the symbiosis between geopolitical and cyber risks. See The Cyber Threat
Decision Intelligence for Optimal Choices: The simultaneous occurrence of numerous disruptions complicates situational awareness and can inhibit effective decision-making. Every enterprise should evaluate their methods of data collection, assessment, and decision-making processes. For more insights: Decision Intelligence.
Embracing Corporate Intelligence and Scenario Planning in an Uncertain Age: Apart from traditional competitive challenges, businesses also confront external threats, many of which are unpredictable. This environment amplifies the significance of Scenario Planning. It enables leaders to envision varied futures, thereby identifying potential risks and opportunities. All organizations, regardless of their size, should allocate time to refine their understanding of the current risk landscape and adapt their strategies. See: Scenario Planning