Start your day with intelligence. Get The OODA Daily Pulse.

Home > Briefs > Technology > A popular technique to make AI more efficient has drawbacks

A popular technique to make AI more efficient has drawbacks

One of the most widely used techniques to make AI models more efficient, quantization, has limits — and the industry could be fast approaching them. In the context of AI, quantization refers to lowering the number of bits — the smallest units a computer can process — needed to represent information. Consider this analogy: When someone asks the time, you’d probably say “noon” — not “oh twelve hundred, one second, and four milliseconds.” That’s quantizing; both answers are correct, but one is slightly more precise. How much precision you actually need depends on the context. AI models consist of several components that can be quantized — in particular parameters, the internal variables models use to make predictions or decisions. This is convenient, considering models perform millions of calculations when run. Quantized models with fewer bits representing their parameters are less demanding mathematically, and therefore computationally. (To be clear, this is a different process from “distilling,” which is a more involved and selective pruning of parameters.) But quantization may have more trade-offs than previously assumed. According to a study from researchers at Harvard, Stanford, MIT, Databricks, and Carnegie Mellon, quantized models perform worse if the original, unquantized version of the model was trained over a long period on lots of data. In other words, at a certain point, it may actually be better to just train a smaller model rather than cook down a big one.

Full report : Quantization, the most popular method used by artificial generative intelligence models may have reached its limit.